

Design Document

Project: Smart Shopping Application

Student: Jason O’Hara

Student Number: C00168956

Supervisor: Paul Barry

2

Contents

1. Introduction ... 3

1.1 Smart Shopping Application .. 3

1.2 Purpose of This Document ... 3

2. Overview ... 3

2.1 System Overview .. 3

2.2.Frontend Overview .. 4

2.2.1 Scope ... 4

2.2.2 Kivy ... 5

2.3 Backend Overview .. 7

2.3.1 Web Application ... 7

2.3.2 Administration Website .. 7

2.3.3 Database Design .. 7

3. Design ... 11

3.1 Iteration 1 .. 11

3.1.1 Start-up... 11

3.1.2 Add to Shopping List .. 13

3.1.3 Sync Shopping List to Cloud .. 13

3.1.4 Basic Shopping List Sorting ... 14

3.2 Iteration 2 .. 15

3.2.1 Sorting Shopping List in More Complex Manner ... 15

3.2.2 Move Product Within Shop .. 15

3.2.3 Login ... 16

3.2.4 Logout .. 17

3.2.5 Create Account .. 17

3.3 Iteration 3 .. 18

3.3.1 Add List to My Lists .. 18

3.3.2 Select List From My Lists ... 19

3.3.3 Delete List From My Lists ... 20

3.3.4 Add Shop to My Shops .. 20

3.3.5 Select Shop From My Shops ... 21

3.3.6 Delete Shop From My Shops ... 21

3.3.7 Delete Account ... 22

3

1. Introduction

1.1 Smart Shopping Application

The Smart Shopping Application is a cross-platform, mobile shopping list application. Its key

features are:

 Allow a user to create a shopping list in a quick and easy manner.

 Allow a user to save this list to a cloud database

 Allow the user to add information regarding the location of a product in a given shop to a

cloud database.

 Allow a user to sort a shopping list based on the location of products in a given shop.

The functionality that separates this application from the many other basic shopping list

applications available is the list-sorting functionality. This uses crowd-sourced data to maintain a

database describing the location of products across a selection of different shops and supplies

users with the ability to integrate this information directly into their personal shopping list.

The intention is to develop this application in a cross-platform manner with a particular focus on

mobile platforms. This application will be developed across three iterations from October 2015

until April 2016 by a single developer.

1.2 Purpose of This Document

The purpose of this document is to give an overview of the design of this application on a

technical level, broken down on a by-iteration basis. It will do this with the use of sequence-style

diagrams to give a system-wide overview of the processes and pseudo-code to give a more

detailed description of the logic involved as needed. Many processes have had low-level details

simplified for the sake of clarity.

The functionality of this application will be described in greater technical detail in the Functional

Specification of this project, the results of the all research done will be discussed in the

Research Document and the overall results of this project will be discussed in detail in the Final

Project Report.

2. Overview

2.1 System Overview

The basic layout of the system involves a Python application running on the client device. This

application has been developed using Kivy and Buildozer in order to be cross platform. The

Python application communicates with a web application backend hosted on PythonAnywhere

4

via HTTP requests. This backend is also written in Python and interacts with the

PythonAnywhere MySQL database where all cloud information is stored.

The below diagram summarises the system architecture using Android (the main target

platform) as an example.

Fig 2.1 System Architecture Overview

2.2.Frontend Overview

This section is an overview of the architecture used for the frontend client application.

2.2.1 Scope

The frontend application performs the following tasks:

● Provides an easy-to-use interface for the user to interact with the system.

● Sends information and/or requests to the backend web application.

● Receives and parses information received from the backend web application.

● Stores some information locally between syncing or saving to the cloud.

5

2.2.2 Kivy

Kivy is core to the structure of all frontend code. Kivy uses a hierarchical structure to order

“Widgets” (UI Elements) in an intuitive way.

Fig 2.2 A general description of the Kivy widget hierarchy of this project.

In the above diagram the App widget is the root of all other widgets. It can be referenced from

any of the other widgets directly and stores global variables such as the username of the user

currently logged in and their secret key.

The ScreenManager widget manages which screen is currently visible, the transitions between

screens and any processes that involve the creation of screens or the altering of multiple

screens at once.

Each Screen widget represents a distinct view the user may have of the application at any one

time. There are 12 default screens, with more generated upon start-up. Screen widgets

generally have only one direct child widget, a layout widget. This widget defines the manner in

which its own child widgets are placed on the screen. These Layout widgets may be nested in

6

order to define different layouts for different areas on the screen. Each Screen/Layout then has

many basic UI elements as child widgets such as buttons, textboxes, labels etc.

Each widget has direct access to its parent, its children and the root widget. In this way widgets

may alter and respond to the states of other widgets in the hierarchy.

These widgets, their properties and their behaviour are defined mainly within two .kv files.

These files are written in a special Kivy mark-up language with a nested structure that makes it

easier to store and manipulate the UI design of the application quickly. Main.kv stores the

details of each Screen owned by the ScreenManager. BasicWidgets.kv stores the details of

more low-level widgets such as specific buttons, labels etc.

Widgets may also be created and inserted into this hierarchy at runtime. This is the done in

situations such as adding a new item to a shopping list or creating the product/shop menus

upon start-up.

7

2.3 Backend Overview

This section is an overview of the architecture used for the backend server application hosted in

the cloud.

2.3.1 Web Application

This is a Python Flask application hosted on PythonAnywhere. It is accessed by the client via

sending GET and POST requests to various different URLs. The web application then handles

all interaction with the database and returns values to the client application. This application

also handles all requests made via the administration website.

2.3.2 Administration Website

This is a simple HTTP website designed for administrative use. It is hosted on PythonAnywhere

and managed by the Flask web application. It provides a second interface to many of the web

application functions for manipulating database information.

2.3.3 Database Design

The MySQL database supplied as part of the PythonAnywhere service is where all cloud data is

stored. It is manipulated by the Flask application based on requests from the client application

or the administration website. Below is a brief description of each table and its structure.

ADMINS

This table contains information about the administrators who may use the administration

website.

Column Value Description

USERNAME varchar An administrator's username

PASS varchar An administrator's password
(encrypted)

8

LISTS

This table contains the current list for each user, the one last synced with the cloud.

Column Value Description

USER varchar A user’s username

PRODUCT varchar A product on a user’s current
list

QUANTITY int The quantity of said product
on a user’s current list

PRODUCTS

This table contains a categorised list of products that users may chose from for their shopping

lists.

Column Value Description

PRODUCT varchar The name of a product

CATEGORY varchar The category of a product

SAVED_LISTS

This table contains all lists users have saved using the “My Lists” functionality.

Column Value Description

USER varchar A user’s username

LIST_NAME varchar The name of a user’s saved
list

PRODUCT varchar A product on one of a user’s
saved lists

QUANTITY int The quantity of said product
on one of a user’s saved lists

9

SAVED_SHOPS

This table contains the IDs of all shops users have saved using the “My Shops” functionality.

Column Value Description

USER varchar A user’s username

SHOP_ID varchar The ID of one of a user’s
saved shops

SHOPS

This table contains layout information for each shop.

Column Value Description

SHOP_ID varchar A shop’s ID

AISLE int A number of an aisle within a
shop

AISLE_DESCRIPTION varchar A description of an aisle
within a shop

PRODUCT varchar A product on said aisle

SHOP_DETAILS

This table contains general information for each shop.

Column Value Description

SHOP_ID varchar A shop’s ID

SHOP_NAME varchar A shop’s name

LOCATION varchar A shop’s geographic location

10

USERS

This table contains information about each user. The SECRET_KEY field refers to a key

generated for each user that is given to them when they login and used for authentication when

making requests to the server.

Column Value Description

USER varchar A user’s username

PASSWORD varchar A user’s password
(encrypted)

SECRET_KEY varchar A user’s secret key

11

3. Design

This section gives an overview of the design of all key application functions. It does so using

simplified sequence diagrams and pseudocode.

3.1 Iteration 1

This iteration began on the 5th of October 2015 and concluded on the 17th of December 2015.

3.1.1 Start-up

Sequence Diagram

12

Pseudocode
Class MyScreenManager:
 screens_assembled = false
 start-up():
 if user is not already logged in on this device:
 show login screen
 else
 if screens_assembled = false:
 assemble_screens()
 screens_assembled = true
 get user's list from database
 show list screen

 assemble_screens():
 get shops/locations from database

get products/categories from database
for each category
 create category screen
 add to category menu
 for each product in category
 add to category screen
for each location
 create location screen

add to location menu
 for each shop in location
 add to location screen

13

3.1.2 Add to Shopping List

Sequence Diagram

Pseudocode
class ListScreen:
 add_product_to_list(product):
 if product is already on list
 quantity_dictonary[product] ++
 else
 quantity_dictonary[product] = 1
 refresh list

3.1.3 Sync Shopping List to Cloud

Sequence Diagram

14

3.1.4 Basic Shopping List Sorting

Sequence Diagram

Pseudocode
class ListScreen:
 sort_list():
 list_as_csv = current shopping list as csv string
 sorted list = requests.get(<url>, app.user, app.secret_key, list_as_csv)
 for product in sorted list:
 add_product_to_list(product)

15

3.2 Iteration 2

3.2.1 Sorting Shopping List in More Complex Manner

Sequence Diagram

Pseudocode
class ListScreen:
 sort_list():
 sorted = requests.get(<url>, app.user, app.secret_key, jsonify(self.list))
 for aisle in sorted:
 add aisle to list
 for product in aisle:
 add_product_to_list(product)

3.2.2 Move Product Within Shop

Sequence Diagram

16

Pseudocode
class MyScreenManager:
 get_mod_location_screen(product):
 m = new ModLocationScreen()
 m.product = product
 self.add(m)
 show m

class ModLocationScreen:
 modify_aisle(aisle):
 requests.post(<url>, app.user, app.secret_key, self.product, aisle)

3.2.3 Login

Sequence Diagram

Pseudocode
class MyScreenManager:
 login(username, password):
 if username or password do not meet formatting criteria:
 display error message
 else if requests.get(<url>, username, password) == "Login Failed":
 display error message
 else:

if screens_assembled = false:
 assemble_screens()
 screens_assembled = true
get users list from database
show list screen

17

3.2.4 Logout

Sequence Diagram

Pseudocode
class AccountScreen:
 logout():

 re-initialise variables
 show login screen

3.2.5 Create Account

Sequence Diagram

18

Pseudocode
class MyScreenManager:
 signup():
 username = signupScreen.username
 password1 = signupScreen.password1
 password2 = signupScreen.password2
 if password1 <> password2
 display error message
 else if username or password do not meet formatting criteria:
 display error message
 else if requests.get(<url>, username, password) == "Username taken":
 display error message
 else
 requests.post(<url>, username, password)
 confirm account creation
 show login

3.3 Iteration 3

3.3.1 Add List to My Lists

Sequence Diagram

19

Pseudocode
class SaveListScreen:
 save_list():
 list_name = self.list_textbox.text
 if list_name does not meet formatting criteria:
 display error message
 else if requests.get(<url>, list_name) == "List name taken":
 display error message
 else:
 list_screen.save_current(list_name)
 show My Lists screen
class ListScreen:
 save_current(list_name):
 requests.post(<url>, listname, jsonify(self.list))

3.3.2 Select List From My Lists

Sequence Diagram

Pseudocode
class ListScreen:
 import_list(list_name):
 self.list = requests.get(<url>, app.user, app.secret_key, list_name)
 show list screen

20

3.3.3 Delete List From My Lists

Sequence Diagram

Pseudocode
class DeleteListScreen:
 delete_list(del_list):
 requests.post(<url>, app.user, app.secret_key, del_list)
 show My Lists screen

3.3.4 Add Shop to My Shops

Sequence Diagram

21

Pseudocode
class MyShopsScreen:
 save_shop():
 current = list_screen.current shop
 if current == "":
 show error message
 else:
 requests.post(<url>, app.user, app.secret_key, current)

3.3.5 Select Shop From My Shops

Sequence Diagram

Pseudocode

See 3.2.1

3.3.6 Delete Shop From My Shops

Sequence Diagram

Pseudocode
class DeleteShopScreen:
 delete_shop(del_shop):
 requests.post(<url>, app.user, app.secret_key, del_shop)
 show My Shops screen

22

3.3.7 Delete Account

Sequence Diagram

Pseudocode
class AccountScreen:
 delete_account_prompt():
 show prompt confirming user wishes to delete account
 delete_account():
 requests.post(<url>, app.user, app.secret_key)
 show login screen

